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Abstract. Hyponymy relations are the skeleton of an ontology, which is widely
used in information retrieval, natural language processing, etc. Traditional hy-
ponymy construction by domain experts is labor-consuming, and may also suffer
from sparseness. With the rapid development of the Internet, automatic
hyponymy acquisition from the web has become a hot research topic. However,
due to the polysemous terms and casual expressions on the web, a large number
of irrelevant or incorrect terms will be inevitably extracted and introduced to the
results during the automatic discovering process. Thus the automatic web-based
methods will probably fail because of the large number of irrelevant terms. This
paper presents a novel approach of web-based hyponymy discovery, where we
propose a term verification method based on hyponymy hierarchical characteris-
tics. In this way, irrelevant and incorrect terms can be rejected effectively. The
experimental results show that our approach can discover large number of cohe-
sive relations automatically with high precision.
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1 Introduction

Ontologies are a formal model to represent domain knowledge, which is widely used
in information retrieval, natural language processing and various other applications [1].
Hyponymy is the skeleton of a domain ontology, expressing “is-a-kind-of” or “is-a-
subclass-of” relations [2]. For example, “Java” is a kind of “programming language”
(PL), denoted as “Java C PL”. “Java” is the hyponym while “PL” is the hypernym.

Traditional hyponymy relations are often constructed by domain experts, which is
a labor- and time- consuming task. Moreover, manually-constructed knowledge is typ-
ically suffering from severe data sparseness. As reported in Section 6, the hyponymy
relations in WordNet under certain root concepts cover only 3%-5% of what we have
discovered.

In 1992, Hearst proposed an automatic hyponymy acquisition approach [3]. Given
a large corpus, lexical-syntactic patterns (e.g. “A such as B, C”) are used to extract
hyponymy B, C' C A. Based on Hearst’s work, many other researchers proposed ap-
proaches to discover more and more hyponyms in a bootstrapping framework [4]. Pat-
tern learning approaches are also proposed to discover lexical-syntactic patterns as well
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Fig. 1. The iterative hyponymy discovering process. Black dots and solid lines are existing terms
and relations; blank dots and dashed lines are newly selected terms and relations in each iteration.

as hyponyms [5]. However, the hyponymy relations acquired in this fashion are typi-
cally loose and low-coupling because they are not confined in a certain domain, which
fail to form the skeleton of a domain ontology.

To overcome this problem, a naive and direct approach is to search on the Internet
and discover hyponymy iteratively from a starting concept. Figure 1 illustrates the it-
erative searching process. Given the root concept, say programming language (PL), we
search on the search engine, and use lexical-syntactic patterns to extract hyponyms of
PL, e.g., “javscript”’, “object-oriented PL”” (OOPL). Then we extract both hyponyms
and hypernyms of the newly extracted concepts and we obtain “C++", “scripting pro-
gramming language”. So on and so forth, we acquire the “cohesive” hyponymy relation
under PL, which form the skeleton of the domain ontology.

However, in such an iterative process, “irrelevant term explosion” is a common prob-
lem, where the number of irrelevant terms grows exponentially. When extracting hy-
ponyms and hypernyms, irrelevant terms might be included because of polysemous
terms and casual expressions. Even if very few mis-matched or irrelevant terms are ex-
tracted during one iteration, they will introduce even more other irrelevant terms in the
next iteration, so on and so forth, so that the system will soon break down within one or
two iterations.

In this paper, we propose a term verification method based on Hyponymy Hierar-
chical Characteristics (HHC). As we know, hyponymy is a specific kind of relation
between two terms. A complete, well-formed hyponymy hierarchy has some inherent
characteristics, e.g., hyponymy transitivity. These characteristics can be quantified and
used to evaluate the degree to which a hyponymy hierarchy is well-formed. For a grow-
ing hyponymy hierarchy, its characteristics tend to be satisfied to a large degree if the
newly discovered terms are probably correct. On the contrary, if an irrelevant or incor-
rect term is introduced, the characteristics are likely violated to a large degree. So, by
quantifying these characteristics and using some appropriate thresholds, we can judge
whether a newly discovered term should be included or not. Therefore, irrelevant terms
can be removed as soon as possible during the iterative searching process.

2 Related Work

Hearst proposed the “such as” pattern to extract hyponymy in [3]. Z. Kozareva raised the
doubly anchored pattern (DAP) for instance discovery in [6]. In the pattern “N P such
as N P; and X”, they specify at least one instance [N P; in advance. Then they discover
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other instances by applying the pattern iteratively. H. Eduard et al. use the backward
doubly-anchored pattern (DAP~1) [4] to iteratively extract instances and intermediate
concepts. Sanchez extracts immediate anterior word as an classification method [7],
e.g., lung cancer C cancer. R. Snow et al. discover lexical-patterns and hyponymy re-
lations iteratively in [5]. They use patterns to extract relations, and relations to extract
patterns iteratively.

Many researchers focus on removing irrelevant terms during their hyponymy discov-
ery. Co-occurrence is a common technique to judge the relevance between two terms
[8,9,7]. [10] uses content words for domain filtering. [11] extracts instances from free
texts coupled with semi-structured html pages. In [12,5], a group of patterns are used to
determine whether a relation holds.

In our previous work [13], we proposed a term verification method based on text
classification, where a training corpus should be provided in advance. In [14], we con-
sidered hyponymy transitivity. In this paper, we extend the method in [14] and semanti-
cally verify the candidate results by three hyponymy hierarchical characteristics. With
irrelevant terms removed effectively, the system can search iteratively and automati-
cally.

3 Overview of Our Approach

Our approach of “cohesive” hyponymy discovery is an iterative process. Given a root
concept, we do web searching and pattern matching to extract candidate hyponyms
and/or hypernyms. Then HHCs are used to judge whether the candidates are relevant
to the root. Selected candidates are then searched iteratively. Figure 2 illustrates the
overview of our approach and the main steps are listed as follows.

Step 1 We first specify a root term 7.

Step 2 We construct a search query by a lexical-syntactic pattern and r. The query is
sent to a search engine. Web snippets returned by the search engine are collected.

Step 3 By matching the lexical-syntactic pattern “A is ajan B”, noun phrases A, B are
extracted as candidate hyponyms.

Step 4 Since a noun phrase is not necessarily a term which represents a common con-
cept in the human mind (e.g., “a well-designed PL”), we verify whether the noun
phrases extracted in Step 3 are terms with a pragmatic method. If A appears in a
pattern “A is ajan”, then A is regarded as at term.

Step 5 Three types of hyponymy hierarchical characteristics are used to verify whether
a term is relevant to r. Irrelevant terms are removed.

Step 6 We search the newly selected terms for both hyponyms and hypernyms on the
web in the next iteration. (Go to Step 2.)

In Section 4, we introduce HHCs in detail. Based on these characteristics we design
our candidate hyponymy verifying method in Section 5.

4 Hyponymy Hierarchical Characteristics

As mentioned in Section 1, the cohesive hyponymy relations under a root term have
some inherent characteristics which can be for term verification. In this paper, we
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Fig. 2. Overview of our approach

propose three types of Hyponymy Hierarchical Characteristics (HHC), namely (1) hy-
ponymy transitivity characteristic, (2) hyponym-hypernym ratio decreasing character-
istic and, (3) hyponym overlapping characteristic.

A complete, well-formed hyponymy hierarchy will exhibit these hyponymy hierar-
chical characteristics, which can be used to evaluate the degree to which a growing
hyponymy hierarchy is well-formed. The characteristics of a growing hyponymy hi-
erarchy tends to be satisfied if the newly discovered term is probably correct. On the
contrary, if an incorrect or irrelevant term is introduced to the growing hyponymy hi-
erarchy, these characteristics tend to be violated to a large degree. We quantify these
characteristics, and use thresholds to judge whether a candidate term should be included
or not, introduced in detail in the rest part of this section.

4.1 Hyponymy Transitivity Characteristic

As we know, hyponymy is a transitive relation. For terms a,b, ¢, if aC b and bC ¢, it
can be inferred that a C c. We call this Hyponymy Transitivity Characteristic (HTC).
Since the web contains massive information, these semantically redundant expres-
sions all may stated explicitly on the web, and they can be cross-validated by each other.
In particular, if we want to get hyponyms or hypernyms of a term ¢, we first get
candidate hyponyms and hypernyms of ¢. For each candidate ¢ (either cC ¢ or t C ¢),
we search potential hyponyms and hypernyms of c. In this case, hyponymy transitivity
can be used to verify c. There are four typical scenarios when we verify c. Whether c is
cross-validated by HTC in each scenario is shown in Figure 3 and explained as follows.

Scenario 1: If ¢ is a candidate hyponym of ¢, and if c is the hyponym or hypernym of
any one of other already selected terms (¢ excluded), then cis regarded as a relevant
term since it is cross-validated by other hyponymy relations.

Scenario 2: If cis a candidate hypernym of ¢, and c is a hyponym of some other select
terms, then c is also cross-validated.
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Fig. 3. Scenarios when verifying a candidate term by HTC

Scenario 3: In this scenario, ¢ is a candidate hypernym of ¢, and some other selected
terms are the hyponym of c. If no other hyponymy relations can infer ¢cC 7, then ¢
is not cross-validated.

Scenario 4: If no hyponyms and hypernyms of ¢ have relations with any selected term
(t excluded), then c is not cross-validated.

4.2 Hyponymy-Hypernym Ratio Decreasing Characteristic (RggDC)
We define Hyponym-Hypernym Ratio (Ryy) as follows'.

#Hyponym(t) + 1

Rian(t) = #Hypernym(t) 4+ 1

where adding one in the equation is a widely used smoothing technique used in many
NLP tasks [15].

For two terms a, b, If a C b, then Ruu(a) < Ruu(b). This is called Hyponymy-
Hypernym Ratio Decreasing Characteristic (RggDC).

The above fact can be proven by the definition of hyponymy relation. If a C b, b
inherits all the hyponyms of a. So b has more hyponyms than a. Likewise, a has more
hypernyms than b. Therefore Ry (a) < Ruu(b).

Though we cannot get the entire hyponymy relations, the phenomenon still holds true
that when we search a term, a higher level term tends to have more hyponyms and less

! Hyponym(t) is the hyponyms of ¢, Hypernym(t) is the hypernyms of ¢. # refers to the number
of elements in a set.
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hypernyms, and thus has a higher Ryy value. A preset threshold is used to determine
whether a candidate term satisfies RygDC.

Formally, if cC ¢ and Ruu(c) > t1-Ruu(t), then we say RggDC is violated, which in-
dicates an anomaly. A typical cause of RyyDC violation is the presence of polysemous
terms. For example, “scheme” is a kind of PL. Meanwhile, “scheme” has many different
meanings, one of which refers to a schema or an outline. Therefore Ryy(scheme) may
be much larger than Ryy(PL). Terms that violate RyyDC cannot be used for verifying
other terms with hyponymy transitivity (introduced in Section 4.1). Otherwise, a large
number of irrelevant terms might be mis-validated.

4.3 Hyponym Overlapping Characteristic (HOC)

We define Hyponym Overlapping Proportion (HOP) of terms a, b as follows.

# {Hyponym(a) () Hyponym(b)}

Fro(a,9) = #Hyponym(a)

In a complete, well-formed hyponymy hierarchy, if a C b, then Pyo(a, b)=1, because
Hyponym(a) C Hyponym(b). Though we cannot extract the complete hyponyms of
a and b, Pyo(a,b) is probably high if a T b. This is called Hyponym Overlapping
Characteristic (HOC). A threshold is also used to determine whether HOC is satisfied.
When discovering hyponymy relations under the root term r by iterative searching,
we calculate Pyo(c, r) to verify a candidate term c. If Pyo(c, r) is greater than a preset
threshold t2, HOC is satisfied, which indicates that ¢ might be a relevant term.
However, because we add new terms to hyponyms of r in each iteration, Hyponym(t)
() Hyponym(r) grows larger naturally during the iterations. Py is not stable in different
iterations. Therefore, we multiply a heuristic regularization factor and extend Pyo(c, )

to the following equation. (N +1)In(N + 1)
P =
Hole47) = (uttyponym(c) + 1)n(S +1)

Here N = # {Hyponym(c) () Hyponym(r)}, S is the size of the entire selected hy-
ponyms of 7. Adding-one smoothing is also applied for FPyo.

Hyponymy overlapping characteristic can deal with the situation where those hy-
ponymy relations are not extracted explicitly from the web. For example, “Turing com-
plete PL (TCPL) C PL” is not stated explicitly on the web. Therefore TCPL cannot
be cross-validated by HTC because none of the known terms is stated explicitly as the
hypernym of TCPL. However, when we examine the hyponyms of TCPL, we find the
majority of them are known hyponyms of PL, e.g., javascript, ruby, matlab etc. So,
Pyo(TCPL, PL) is large and TCPL is probably a relevant term to PL.

S Verifying Candidate Terms Based on Hyponymy Hierarchical
Characteristics

In this part, we explain our method of candidate term verification based on the three
types of HHCs introduced in Section 4.
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Fig. 4. The decision process of verifying a candidate term based on hyponymy hierarchical char-
acteristics

To implement our semantically verification approach, we need to maintain two lists
of terms: Result List (RL) and Cross Validate List (VL). RL is the hy-
ponyms obtained as the result; V' L is a subset of RL for which we have higher confi-
dence, and V' L is used for cross-validation. These two lists are updated in two iterations.

Figure 4 gives the decision process of candidate term verification. For a candidate
term c, if ¢ is cross-validated by HTC with V' L (Scenario 1 and Scenario 2 in Subsection
4.1), cis added to RL. Furthermore, if RyyDC constraint of c is satisfied, i.e.,

Run(c) < t1 - Ruu(c’s hypernym), then c is considered as a relevant term with high
confidence, and is added to VL. If RuqgDC constraint of c is not satisfied, ¢ is added to
RL only since it may indicate that c is a polysemous term like “scheme”.

If c is not cross-validated by HTC, but after we obtain the hyponyms of ¢, if the
hyponym overlapping proportion is large, i.e., HOP(¢, ) > to, this may indicate the
absence of some hyponymy relations. Therefore we regard c as a relevant term and add
c to RL. However, to be on the safe side, ¢ is not added to V' L.

For those terms that are neither cross-validated by HTC nor satisfying HOC con-
straint, they are discarded.

There still remains one problem to solve. Since there are no selected terms in the first
iteration, how can we validate candidate terms at the beginning? In our approach, given
the root term r, we get candidate hyponym ¢, and search ¢ on the web. If r is extracted
as the hypernym of c, then c is selected. This seems trivial, but can effectively remove
some noises caused by html parsing errors, sentence segmenting errors, etc.

6 Experimental Results

We carried out two experiments under the root terms “programming language” and
“algorithm”. The root terms are assigned respectively by human in advance. Then the
system works automatically by our approach.

Our approach needs two parameters ¢; and t2, which are set to 3 and 0.1 empirically.
These two parameters are fixed between the two experiments. The number of iterations
is limited to 3.
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Fig. 5. Percentage of correct candidate terms and number of incorrect terms in each iteration in
Experiment I before pruning by HHCs
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Fig. 6. TP and TN of term verification in each iteration in Experiment I

6.1 Experiment I

In the first experiment, we discovered hyponymy under the root term “programming
language.” The system has totally accepted 975 terms and discarded 7002 terms. Full
sized evaluation is executed on the system-accepted terms; for those terms that are
discarded by our system, we randomly sample about 100 terms and report the sampling
statistics. Each term is annotated by human, which falls into three categories, namely
CORRECT, INCORRECT and BORDERLINE. Those in BORDERLINE category are not
counted in our result.

Accuracy of Term Verification. In this part, we evaluate our candidate term verifica-
tion approach based on hyponymy hierarchical characteristics.

In Figure 5, we present the percentage of the actual correct terms and the number of
incorrect terms in each iteration. In the first iteration, it achieves 82.11% accuracy for
the candidate terms that are extracted. In the second and third iteration, the accuracy
among the 3000-4000 total candidates is only about 13%. Therefore, the “irrelevant
term explosion” problem is severe in the iterative hyponymy discovery framework. Se-
lecting correct terms is like gold mining — finding small quantities of the wanted among
massive unwanted.

In our approach, candidate terms are verified semantically by hyponymy hierarchical
characteristics. True positive rate (7' P) and true negative rate (7'IV) are used to evaluate
accuracy. Figure 6 shows T'P and T'N in the three iterations. Except for the special
treatment in the first iteration, T'N rate is high (over 95%) in the remaining iterations,
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Table 1. Recall against Wikipedia list and TIOBE index

o It Standard
UITESUS Wikipedia List TIOBE Top 20 TIOBE Top 50 TIOBE Top 100
# 693 645 20 50 100
Recall - 30.43% 100% 92% 79%
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Fig.7. Number of terms we get in each iteration in Experiment I
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Fig. 8. Precision in each iteration in Experiment I

which ensures the system can work automatically and effectively. T P rate is relatively
low at the first glance, since our candidate verifying approach is very strict. One reason
for the low T'P rate is that some programming languages are only mentioned in one
or a few scientific papers, and therefore it cannot be cross-validated by either HTC or
HOC. However, on second thought, it seems reasonable since we as human beings can
hardly confirm a hyponym of PL if it is mentioned only once on the web. Despite the
relatively low TP, the number of selected terms is large and the recall of commonly
used PL is also high.

As seen, the iterative process will introduce a huge number of irrelevant terms as
candidates. Our term verification method can effectively remove the irrelevant terms
before they grow exponentially.

Precision and Recall. In this part, we evaluate precision and recall of our result.
Figure 7 presents the number of new terms in each iteration. Totally, we get 692 cor-
rect hyponym terms under the term PL. We compare the number to two open hyponymy
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Table 2. Number of hyponyms under “programming language” in WordNet, WordNet+40k, and
our result

‘WordNet WordNet+40k Our result
34 77 692

Table 3. Number of hyponyms under “algorithm” in WordNet, WordNet+40k, and our result

WordNet WordNet+40k Our result
3 8 223

lexicons. In particular, one is WordNet 2.12 ; the other is an automatic enlarging of
WordNet by machine learning approaches [5]*, which adds up to 40,000 concepts to
WordNet. As shown in Table 2, the number of hyponyms we get is much more signifi-
cant than the other two related works.

Figure 8 shows the precision during the iterative searching process. The overall pre-
cision reaches 77.89%.%

Calculating recall is difficult because we can hardly find a complete, authentic gold
standard. WordNet is not suitable to be the gold standard since it suffers from severe
term sparseness. We find two lists that are suitable to compare our results to.

1. Wikipedia list’. Wikipedia reflects the collective wisdom of the online community.
Everyone can edit and contribute to Wikipedia so that this list is comparatively
complete, containing 645 instances of PL.

2. TIOBE index®, which lists top 20/50/100 PLs indexed by TIOBE programming
community. Comparing to TIOBE index, we can see the recall on common pro-
gramming languages.

Table 1 shows the number of concepts in the golden standards, and the recall cal-
culated against these standards. As we can see, more than 30% instances of Wikipedia
lists are recalled; for the TIOBE top 20/50/100 PL index, our recall is 100%, 92% and
79% respectively, which is also high.

This experiment shows our approach has acquired both high precision (77.89% on
average) and high recall against Wikipedia list and TIOBE index.

6.2 Experiment I1

In the second experiment, we extract hyponymy relations under the root term “algo-
rithm”. The parameters of our algorithm remains unchanged.

Figure 9 presents the TP and TN of our term verification approach. As shown in
Figure 10, we totally obtain 379 terms under “algorithm” while the average precision

2 WordNet is available on http: //wordnet .princeton.edu/

3 This work is available on http://ai.stanford.edu/~rion/swn/

* Those terms annotated as BOARDERLINE are not counted.

5 http://en.wikipedia.org/wiki/List_of_programming_languages

6 http://www.tiobe.com/index.php/content/paperinfo/tpci/
index.html
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Fig. 11. TP and TN of term relevance verifying in each iteration in Experiment II

is 71.25%, which is also acceptable. The number of hyponyms is also more significant
than WordNet and WordNet+40k (See Figure3).

This experiment shows that our approach is general applicable since we do not
change the parameters.

From the two experiments, we can see that our approach has extracted a large number
of terms with high recall. Incorrect and irrelevant terms can be removed effectively, so
that the system can work iteratively and automatically.
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Conclusion

In this paper, we propose a domain hyponymy discovery approach with term verification
based on hyponymy hierarchy characteristics.

Our approach needs very few human supervision. Only a root concept should be given

in advance. Then the system can search for domain hyponymy relations automatically
and unsupervisedly. At the end of the process, we gain the “cohesive” hyponymy with
relatively high precision and recall, which forms the skeleton of the domain ontology.
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